Qualify Examination

Chemical Engineering Thermodynamics

Dec. 27, 2007

Part I. Undergraduate level (50 %)

(1) Values of the virial coefficients B and C $[PV/(RT) = 1 + B(T)/V + C(T)/V^2 + \cdots]$ at a fixed temperature can be obtained from experimental PVT data by noting that

$$\lim_{P\to 0} \left[\underbrace{PV}_{(RT)} \right] = 1$$

$$\lim_{P\to 0} \underline{V}[P\underline{V}/(RT)-1] = B$$

$$\lim_{P\to 0} \frac{V^2[PV/(RT) - 1 - B/V]}{(V-\infty)} = C$$

Show that the van der Waals equation $[(P + a/\underline{V}^2)(\underline{V} - b) = RT]$ leads to the following expressions for the virial coefficients

$$B = b - a/(RT)$$
 $C = b^2$
(25 %)

(2) An adiabatic turbine is operating with an ideal gas working fluid of fixed inlet temperature and pressure, T_1 and P_1 , respectively, and a fixed exit pressure P_2 . Show that the minimum outlet temperature T_2 occurs when the turbine operates reversibly, that is, when the rate of internal generation of entropy within the system $(\dot{S}_{gen}) = 0$. Determine the maximum work that can be extracted from the turbine. (Hint: starting from mass, energy, and entropy balances.)

Part II. Graduate level (50 %)

(3) Based on the knowledge of intermolecular forces, compare qualitatively the molar excess enthalpies for the following four equal-molar mixtures at a given T.

Mixture A: n-octane + cyclohexane

Mixture B: m-xylene + tetrahydrofuran (C₄H₈O)

Mixture C: water + methanol

Mixture D: 2, 2, 3-trimethylbutane + cyclohexane

Please give a brief explanation to support your answer. (16 %)

(4)

- (a) Express γ_2^* in terms of γ_2 , where $\gamma_2^* = 1$ as $x_2 \to 0$ and $\gamma_2 = 1$ as $x_2 \to 1$. (10 %)
- (b) Derive $\ln \gamma_2^*$, if

$$\ln \gamma_2 = x_1^2 \left[\tau_{12} \left(\frac{G_{12}}{x_2 + x_1 G_{12}} \right)^2 + \frac{\tau_{21} G_{21}}{\left(x_1 + x_2 G_{21} \right)^2} \right]$$
 (4 %)

- (5) Explain concisely the following terms:
 - (a) **Phase space** in Statistic Thermodynamics (5 %)
 - (b) Cubic equations of state (5 %)
 - (c) Binary interaction parameter, kij, in a mixing rule (5 %)
 - (d) Local composition concept proposed by Wilson (5 %)