2008 Spring Analytical Chemistry Qualification Exam (answers can be in either Chinese or English)

1. Explain the ESCA spectrum of Trifluoroacetate shown on the right (10%)

- 2. (a) Describe the mechanism of the production of MNN Auger electron;
 - (b) Describe how it is possible to distinguish between the ESCA peaks from the Auger electron peaks in an ESCA spectrum. (20%)
- 3. (a) How does Scanning Electron Microscope work?
 - (b) Describe principles of two major types of SEM detectors (20%)
- 4. The acid-base indicator HIn undergoes the following reaction in dilute aqueous solution: HIn ↔ H⁺ + In⁻

The following absorbance data were obtained for a 5.00×10^{-4} M solution of HIn in 0.1 M NaOH and 0.1 M HCl. Measurements were made at wavelengths of 485 nm and 625 nm with 1.00-cm cells.

0.1 M NaOH
$$A_{485} = 0.075$$
 $A_{625} = 0.904$

0.1 M HCI
$$A_{485} = 0.487$$
 $A_{625} = 0.181$

In the NaOH solution, essentially all of the indicator is present as In⁻; in the acidic solution, it is essentially all in the form of HIn.

- (a) Calculate molar absorptivities for In and HIn at 485 and 625 nm.
- (b) Calculate the acid dissociation constant for the indicator if a pH 5.00 buffer containing a small amount of the indicator exhibits an absorbance of 0.567 at 485 nm and 0.395 at 625 nm (1.00-cm cells).

2008 Qualification examine of Chemical Reaction Engineering

Undergraduate part

4. Titanium dioxide is a wide-band gap semiconductor that is showing promise as an insulating dielectric in VLSI capacitors and for use in solar cells. Thin films of TiO_2 are to be prepared by chemical vapor deposition (CVD) from gaseous titanium tetraisopropoxide (TTIP). The overall reaction is

$$Ti(OC_3H_7)_4 \to TiO_{2(g)} + 4C_3H_6 + 2H_2O$$

The reaction mechanism in a CVD reactor is believed to be

$$TTIP_{(g)} + TTIP_{(g)} \Leftrightarrow I + P_1$$

$$I + S \Leftrightarrow I \cdot S$$

$$I \cdot S \rightarrow TiO_2 + P_2$$
,

where I is an active intermediate and P_I is one set of reaction products (e.g., H_2O , C_3H_6) and P_2 is another set. Assuming the homogeneous gas-phase reaction for TTIP is in equilibrium, derive a rate law for the deposition of TiO_2 . The experimental results show that at 200°C the reaction is second order at low partial pressures of TTIP and zero order at high partial pressures, while at 300°C the reaction is second order in TTIP over the entire pressure range. Discuss these results in light of the rate law you derived. (20%)

5. The reaction $A \rightarrow B$ is to be carried out isothermally in a continuous-flow reactor. Calculate both the CSTR and PFR reactor volumes necessary to consume 99% of A (i.e., $C_A = 0.01 \ C_{A0}$) when the entering molar flow rate is 5 mol/h, assuming the reaction rate $-r_A$ is:

(a)
$$-r_A = k$$
 with $k = 0.05 \frac{mol}{h \cdot dm^3}$

(b)
$$-r_A = kC_A$$
 with $k = 0.0001s^{-1}$

(c)
$$-r_A = kC_A^2$$
 with $k = 3\frac{dm^3}{mol \cdot h}$

The entering volumetric flow rate is $10 \, dm^3/h$. (15%)

6. In order to study the photochemical decay of aqueous bromine in bright sunlight, a small quantity of liquid bromine was dissolved in water contained in a glass battery jar and placed in direct sunlight. The following data were obtained at 25℃:

Time (min)	10	20	30	40	50	60
ppm Br ₂	2.45	1.74	1.23	0.88	0.62	0.44

- (a) Determine whether the reaction rate is zero, first, or second order in bromine, and calculate the reaction rate constant in units of your choice.
- (b) Assuming identical exposure conditions, calculate the required hourly rate of injection of bromine (in pounds) into a sunlit body of water, 25000 gal in volume, in order to maintain a sterilizing level of bromine of 1.0 ppm.
- (c) What experimental conditions would you suggest if you were to obtain more data? (15%)