高等 物理化學 資格考

- 1. The π electrons of metal porphyrins, such as the iron-heme of hemoglobin or the magnesium-porphyrin of chlorophyll, can be visualized using simple model of free electrons in a two-dimensional box.
- (a) Obtained the energy levels of a free electron in a two-dimensional square box of length a.
- (b) For a porphyrin-like hemin that contains 26π electrons, sketch an energy-level diagram for the occupied orbitals (Hint: degeneracy).
- (c) The porphyrin structure measures about 1 nm on a side (a = 1 nm). Calculate the longest-wavelength absorption band position for the molecule. (15%)
- 2. Using Hückel molecule-orbital theory, determine whether the linear state or the triangular state of H₃⁺ is the more stable state. Repeat the calculation for H₃ and H₃. (10%)
- 3. The bond length in ¹²C¹⁴N is 117 ppm and its force constant is 1630 N/m. Predict the vibrational-rotational spectrum of ¹²C¹⁴N. (Hint: P, Q and R bands) (10%)
- 4. The rate law for the reaction described by $[N_2O_2(g) \rightarrow 2 \text{ NO}(g)]$ is first order in the concentration of $N_2O_2(g)$. Derive an expression for the time-dependent behavior of [NO], the product concentration. (8%)
- 5. The rate constant for the reaction [2 HI(g) \rightarrow H₂(g) + I₂(g)] is 1.22 x 10⁻⁶ dm³/mol.s at 575 K and 2.50 x 10⁻³ dm³/mol.s at 716 K. Estimate the value of Ea from these data. (7%)
- 6. Put 1 mole of O_2 in a 1 liter container A, and 5 moles of N_2 in a 2 liter container B. Both A and B are kept at 300K, and are connected with a valve. When the valve is opened to allow the mixing of gases, please calculate (a) $\triangle S$ (b) $\triangle G$ (20%)
- 7. Melting point of Naphthalene is 80.2°C, vapor pressure of its liquid is 10 torr at 85.8°C, 40 torr at 119.3°C. Please use the Clausius-Clapeyron equation to calculate (a) normal boiling point of Naphthalene, (b) S_{vaporization} at b.p. (20%)
- 8. Please use thermodynamic functions to explain the difference in slopes for three phases in (a) G vs. T; (b) G vs. P (10%)

