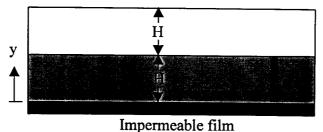
輸送現象

Make assumptions and show all your work.

- 1. (25 pts) Consider a tangential laminar flow of an impressible Newtonian fluid between two vertical coaxial cylinders. The outer one (with radius R_0) is fixed and the inner one (with radius R_i) is rotating with an angular velocity w.
 - (a) Obtain the governing equation from the momentum equation.
 - (b) Determine the velocity and shear stress distributions. End effects may be neglected.
- 2. (25 pts) A horizontal channel of height H has two fluids of different viscosities (μ_a and μ_b) and densities (ρ_a and ρ_b) flowing because of a pressure gradient. Find the velocity profiles if the height of the fluid interface is 2H/3.
- 3. (25 pts) A slab occupying the space between y = 0 and y = b is initially at temperature T_0 . At time t > 0, the surface at y = b is suddenly raised to T_1 and maintained there, and the surface at y = 0 is kept adiabatic. Find the unsteady-state temperature profile T(y, t) within the slab.
- 4. (25 pts) A biocatalytic absorber for a species A is designed as shown in Fig. 1. The system contains tow different layers, an encapsulating layer and a reactive layer. The layers are attached to an impermeable film, as shown. The species A has the same solubility (α) in each layer, as well as its diffusion coefficient (D). A first-order reaction of A occurs homogeneously throughout the reactive layer. Derive expressions for the concentration of the species A within the system and the flux across the surface of this system. Assume that the system is at steady state.

C_A⁰ is uniform outside the encapsulating layer



Encapsulating layer

Reactive layer: first order reaction throughout the layer

TABLE C.3 Components of the Stress Tensor for Newtonian Fluids

Rectangular Coordinates (x, y, z)	Cylindrical Coordinates (r, θ, z)	Spherical Coordinates (r, θ, φ)
$\tau_{xx} = \mu \left[2 \frac{\partial v_x}{\partial x} - \frac{2}{3} (\nabla \cdot \mathbf{v}) \right]$	$\tau_{rr} = \mu \left[2 \frac{\partial v_r}{\partial r} - \frac{2}{3} (\nabla \cdot \mathbf{v}) \right]$	$\tau_{rr} = \mu \left[2 \frac{\partial v_r}{\partial r} - \frac{2}{3} (\nabla \cdot \mathbf{v}) \right]$
$\tau_{yy} = \mu \left[2 \frac{\partial v_y}{\partial y} - \frac{2}{3} (\nabla \cdot \mathbf{v}) \right]$	$\tau_{\theta\theta} = \mu \left[2 \left(\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{v_{r}}{r} \right) - \frac{2}{3} (\nabla \cdot \mathbf{v}) \right]$	$\tau_{\theta\theta} = \mu \left[2 \left(\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{v_{r}}{r} \right) - \frac{2}{3} (\nabla \cdot \mathbf{v}) \right]$
$\tau_{zz} = \mu \left[2 \frac{\partial v_z}{\partial z} - \frac{2}{3} (\nabla \cdot \mathbf{v}) \right]$	$\tau_{zz} = \mu \left[2 \frac{\partial v_z}{\partial z} - \frac{2}{3} (\nabla \cdot \mathbf{v}) \right]$	$\tau_{\varphi\varphi} = \mu \left[2 \left(\frac{1}{r \sin \theta} \frac{\partial v_{\varphi}}{\partial \varphi} + \frac{v_r}{r} + \frac{v_{\theta} \cot \theta}{r} \right) - \frac{2}{3} (\nabla \cdot \mathbf{v}) \right]$
$\tau_{xy} = \tau_{yx} = \mu \left[\frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x} \right]$	$\tau_{r\theta} = \tau_{\theta r} = \mu \left[r \frac{\partial}{\partial r} \left(\frac{v_{\theta}}{r} \right) + \frac{1}{r} \frac{\partial v_{r}}{\partial \theta} \right]$	$\tau_{r\theta} = \tau_{\theta r} = \mu \left[r \frac{\partial}{\partial r} \left(\frac{\upsilon_{\theta}}{r} \right) + \frac{1}{r} \frac{\partial \upsilon_{r}}{\partial \theta} \right]$
$\tau_{yz} = \tau_{zy} = \mu \left[\frac{\partial v_y}{\partial z} + \frac{\partial v_z}{\partial y} \right]$	$ au_{ heta z} = au_{z heta} = \mu \left[rac{\partial v_{ heta}}{\partial z} + rac{1}{r} rac{\partial v_{z}}{\partial heta} ight] \ .$	$\tau_{\theta\varphi} = \tau_{\varphi\theta} = \mu \left[\frac{\sin\theta}{r} \frac{\partial}{\partial\theta} \left(\frac{v_{\varphi}}{\sin\theta} \right) + \frac{1}{r\sin\theta} \frac{\partial v_{\theta}}{\partial\varphi} \right]$
$\tau_{zx} = \tau_{xz} = \mu \left[\frac{\partial v_z}{\partial x} + \frac{\partial v_x}{\partial z} \right]$	$\tau_{zr} = \tau_{rz} = \mu \left[\frac{\partial v_z}{\partial r} + \frac{\partial v_r}{\partial z} \right]$	$\tau_{\varphi r} = \tau_{r\varphi} = \mu \left[\frac{1}{r \sin \theta} \frac{\partial v_r}{\partial \varphi} + r \frac{\partial}{\partial r} \left(\frac{v_{\varphi}}{r} \right) \right]$
$(\nabla \cdot \mathbf{v}) = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$	$(\nabla \cdot \mathbf{v}) = \frac{1}{r} \frac{\partial}{\partial r} (r v_r) + \frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{\partial v_z}{\partial z}$	$(\nabla \cdot \mathbf{v}) = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 v_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (v_\theta \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial v_\varphi}{\partial \varphi}$

TABLE C.5 Momentum Equations for a Newtonian Fluid with Constant Density (ρ) and Constant Viscosity (μ)

Rectangular Coordinates (x, y, z):

$$\rho\left(\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z}\right) = \mu\left[\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2}\right] - \frac{\partial p}{\partial x} + \rho g_x$$

$$\rho\left(\frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z}\right) = \mu\left[\frac{\partial^2 v_y}{\partial x^2} + \frac{\partial^2 v_y}{\partial y^2} + \frac{\partial^2 v_y}{\partial z^2}\right] - \frac{\partial p}{\partial y} + \rho g_y$$

$$\rho\left(\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z}\right) = \mu\left[\frac{\partial^2 v_z}{\partial x^2} + \frac{\partial^2 v_z}{\partial y^2} + \frac{\partial^2 v_z}{\partial z^2}\right] - \frac{\partial p}{\partial z} + \rho g_z$$
Collection for x , we have

Cylindrical Coordinates
$$(r, \theta, z)$$
:

$$\rho\left(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} - \frac{v_\theta^2}{r} + v_z \frac{\partial v_r}{\partial z}\right) = \mu\left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (r v_r)\right) + \frac{1}{r^2} \frac{\partial^2 v_r}{\partial \theta^2} + \frac{\partial^2 v_r}{\partial z^2} - \frac{2}{r^2} \frac{\partial v_\theta}{\partial \theta}\right] - \frac{\partial p}{\partial r} + \rho g_r$$

$$\rho\left(\frac{\partial v_\theta}{\partial t} + v_r \frac{\partial v_\theta}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_\theta}{\partial \theta} + \frac{v_r v_\theta}{r} + v_z \frac{\partial v_\theta}{\partial z}\right) = \mu\left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (r v_\theta)\right) + \frac{1}{r^2} \frac{\partial^2 v_\theta}{\partial \theta^2} + \frac{\partial^2 v_\theta}{\partial z^2} + \frac{2}{r^2} \frac{\partial v_r}{\partial \theta}\right] - \frac{1}{r} \frac{\partial p}{\partial \theta} + \rho g_\theta$$

$$\rho\left(\frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z}\right) = \mu\left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r}\right) + \frac{1}{r^2} \frac{\partial^2 v_z}{\partial \theta^2} + \frac{\partial^2 v_z}{\partial z^2}\right] - \frac{\partial p}{\partial r} + \rho g_z$$